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We investigate the dynamics of a damped harmonic oscillator with delayed feedback near zero
eigenvalue singularity. We perform a linearized stability analysis and multiple bifurcations of the
zero solution of the system near zero eigenvalue singularity. Taking the time delay as the bifurca-
tion parameter, the presence of steady-state bifurcation, Bogdanov–Takens bifurcation, triple zero,
and Hopf-zero singularities is demonstrated. In the case when the system has a simple zero eigen-
value, center manifold reduction and normal form theory are used to investigate the stability and the
types of steady-state bifurcation. The stability of the zero solution of the system near the simple
zero eigenvalue singularity is completely solved. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3013195�

Time delay is commonly encountered in biological, me-
chanical, and electronic systems. For the delayed systems,
a natural question is how the time delay affects the sta-
bility and induces possible oscillations and complex dy-
namics. It is well know that the dynamics of delayed sys-
tems near zero eigenvalue singularity is often complex
and hard to investigate. Here we study the dynamics of
differential delay equations that arise in the delayed feed-
back control of mechanical systems, especially its dynam-
ics near zero eigenvalue singularity. Taking the time delay
as the bifurcation parameter, we not only investigate the
influence of the time delay on the stability but also dem-
onstrate the presence of steady-state bifurcation,
Bogdanov–Takens bifurcation, triple zero, and Hopf-zero
singularities. In the situation that the zero is a simple
eigenvalue, the normal forms of the reduced equations
are obtained by the center manifold theory and normal
form method for functional differential equation, and
hence the stability of the fixed point is determined, and
transcritical and pitchfork bifurcations are found.

I. INTRODUCTION

In classical mechanics, a harmonic oscillator is a system
which, when displaced from its equilibrium position, experi-
ences a restoring force f . The harmonic oscillator has been
playing a very important role in the study of nonlinear dy-
namics. Early studies have shown that the harmonic oscilla-
tor is truly able to exhibit remarkable complex dynamical
behavior. If a frictional force �damping� proportional to the
velocity is also present, the harmonic oscillator is described
as a damped oscillator. Time delays are intrinsic and impor-
tant features of many physical and biological control sys-
tems. The time delays most commonly occur as a conse-
quence of finite conduction and production times. So, the
time delay has been introduced to the damped harmonic
oscillator.1–4 Using Newton’s Second Law of motion, the dy-

namics of the damped harmonic oscillator with a delayed
restoring force is described by the second delay differential
equation

ẍ�t� + bẋ�t� + ax�t� = f�x�t − ��� , �1.1�

where a, b are constants, � is the time delay, x�t�, x�t−�� are
the displacement at times t, t−�, respectively, and the func-
tion, f , describes the feedback. Equation �1.1� also arises in a
variety of mechanical, or neuromechanical, system in which
inertia plays an important role.5–11 The linear stability and
Hopf bifurcation of Eq. �1.1� have been investigated by
many authors �see Refs. 1, 4, and 10–12, and references
therein�. The complex dynamics of Eq. �1.1�, including chaos
and two-tori, have been discussed by Boe and Chang10,11 for
the case when f is a nonmonotone function. Limit cycles, the
nature of the bifurcations of the two-tori, and multistability
have been investigated by Campbell et al.1–3 when f is
simple monotone negative feedback. However, most of the
works cited above have been done on systems of the form
�1.1� under the assumption that the system does not have a
zero eigenvalue. Thus, the natural question is what happens
when the system has a zero eigenvalue. The main purpose of
this paper is to study the stability and bifurcations of system
�1.1� when it has a zero eigenvalue, especially a simple zero
eigenvalue.

This paper is organized as follows: The local stability
analysis and multiple bifurcations of system �1.1� with a zero
eigenvalue is investigated in Sec. II. The normal form on the
center manifold and the dynamics near the simple zero ei-
genvalue are discussed in Sec. III. In Sec. IV, numerical
simulations are performed to illustrate the results. The paper
ends with conclusions, in Sec. V.
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II. LINEAR STABILITY ANALYSIS
AND MULTIPLE BIFURCATIONS

Equation �1.1� can be written as a first order delay func-
tional differential system of the form

ẋ�t� = y�t� ,

ẏ�t� = − ax�t� − by�t� + f�x�t − ��� .
�2.1�

Setting d= f��0�, then the linearized equation at the origin is

ẋ�t� = Mx�t� + Nx�t − �� , �2.2�

where

M = � 0 1

− a − b
�, N = �0 0

d 0
� . �2.3�

Thus, the characteristic equation of Eq. �2.2� is given by

���,�� = �2 + b� + a − de−�� = 0. �2.4�

Lemma 2.1: Assuming that d=a and b�0, then we have
the following:

(i) when ��−b /a, �=0 is a simple zero root of the char-
acteristic Eq. (2.4);

(ii) when �=−b /a and a�b2 /2, �=0 is a double zero
root of the characteristic Eq. (2.4);

(iii) when �=−b /a and a=b2 /2, �=0 is a triple zero root
of the characteristic Eq. (2.4).

Proof: The presence of zero roots follows from the fact
that ��0,��=0 when d=a. Substituting d=a into ��� ,�� and
taking the partial derivative with respective to � yields

����,��
��

= 2� + b + �ae−��.

Clearly, ���0,�� /��=0 if and only if �=−b /a. So, the con-
clusion �i� follows.

In addition, we also have

�2���,��
��2 = 2 − �2ae−��

and

�3���,��
��3 = �3ae−��,

which implies that �2��0,�� /��2=0 if and only if �=−b /a
and a=b2 /2, but �3��0,�� /��3�0. This completes the
proofs of �ii� and �iii�. �

Lemma 2.2: �I� Assuming that d=a�b2 /2, b�0 and
�0=1 /�2a−b2 arccos��b2−a� /a�, we have the following:

(i) when 0���−b /a, Eq. (2.4) has exactly one positive
real root;

(ii) when �=−b /a, all roots of Eq. (2.4), except for the
double zero roots, have negative real parts;

(iii) when −b /a����0, all roots of Eq. (2.4), except for
the single zero root, have negative real parts;

(iv) when �=�0, all roots of Eq. (2.4), except for the single
zero root and a pair of purely imaginary roots
�i�2a−b2, have negative real parts;

(v) when ���0, Eq. (2.4) has at least a pair of roots with
positive real parts.

�II� If d=a=b2 /2, b�0, then we have the following:

(i) when 0���−b /a, Eq. (2.4) has exactly one positive
real root;

(ii) when �=−b /a all roots of Eq. (2.4), except for the
triple zero root, have negative real parts;

(iii) when ��− b
a , Eq. (2.4) has at least one root with posi-

tive real parts.

�III� If 0�d=a�b2 /2 and b�0, then Eq. (2.4) has at
least one root with positive real parts for all ��0.

Proof: Clearly, when �=0, Eq. �2.4� with d=a has a zero
root �1=0 and a positive real root �2=−b. Suppose that
i	�	�0� is a root of Eq. �2.4� with d=a, then 	 satisfies

a − 	2 = a cos�	��, b	 = − a sin�	�� , �2.5�

which yields

	2 = 2a − b2. �2.6�

So, if a�
1
2b2 Eq. �2.6� has no positive real root, and if

a�
1
2b2 Eq. �2.6� has one positive real root

	+ = �2a − b2.

For a�
1
2b2, set

�k =
1

	+
�arccos�b2 − a

a
� + 2k
	, k = 0,1.

Equation �2.4� with d=a has a pair of purely imaginary roots
�i	+ when �=�k. From Eq. �2.5�, we have

sin�a�0

− b
�− b

a
	+�	 =

− b

a
	+,

which implies that

�0 �
− b

a
, for a �

b2

2
, �2.7�

and

lim
a→�b2/2�+

�0 = lim
a→�b2/2�+

arccos�b2 − a

a
�

�2a − b2
=

− b

a
. �2.8�

Denoted by

���� = ���� + i	���

the root of Eq. �2.4� with d=a satisfy

���k� = 0, 	��k� = 	+.

Differentiating Eq. �2.4� with respect to � gives

d�

d�
=

− a�e−��

2� + b + �ae−�� �2.9�

which, together with Eq. �2.4�, leads to
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�d�

d�
	−1

=
2� + b

− ���2 + b� + a�
−

�

�
,

and then

Re�d�

d�
	

�=�k

−1

=
	+

b2	+
2 + �a − b2�2 � 0.

So, we have the following transversality condition:

sgn� d

d�
Re ���k�	 = sgn�Re�d�

d�
�

�=�k

−1 	 � 0. �2.10�

Conclusion �v� of �I� immediately follows from the above
inequality.

From Eq. �2.9�, we have


d�

d�



�=0
= 
 − a�e−��

2� + b + �ae−��

�=0

= 0, for � �
− b

a
, �2.11�

which, together with Rouché theorem and the fact that Eq.
�2.6� has no positive real root for a�

1
2b2, implies conclusion

�III� is true. From Eq. �2.9�, we also have

lim
�→0

d�

d�
= lim

�→0

2� + b + �ae−��

− a�e−��

= lim
�→0

2 − �2ae−��

�− a + �a��e−��

=
�2a − 2

a ��0, for � =
− b

a
, a �

b2

2
,

�0, for � =
− b

a
, a �

b2

2
.� �2.12�

The combination of Eqs. �2.7�, �2.8�, �2.11�, and �2.12� and
the Rouché theorem completes the proofs of �i�–�iv� of �I�
and �i� of �II�.

When �a1 ,b1� lies on the curve a=b2 /2, suppose for a
contradiction that Eq. �2.4� with �= �−b1� / a1 has a root with
a positive real part, say �0+ i	0 with �0�0. Let ��a�
=��a�+ i	�a� be the root of Eq. �2.4� satisfying ��a1�=�0

�0 and 	�a1�=	0. There exists a sufficiently small ��0
such that Eq. �2.4� with a=a1+�, b=b1 has a root with posi-
tive real part at �=−b1 / �a1+��, which contradicts �ii� of �II�.
This completes the proof of �ii� of �II�. In addition, we also
have

lim
�→0

d�

d�
=

�2a − 2

a � =0, for � =
− b

a
, a =

b2

2
,

�0, for � �
− b

a
, a =

b2

2
.�

So �iii� of �II� is also true. The proof is complete.
By Lemmas 2.1, 2.2, and the theory of the functional

differential equations, we have the following two theorems.
Theorem 2.1: �I� Assuming that d=a�b2 /2, b�0, and

�k=1 /�2a−b2�arccos��b2−a� /a�+2k
� , k=0,1 ,2 , . . ., we
have the following:

(i) when ��−b /a and ���k, Eq. (1.1) undergoes a
codimension-one steady state bifurcation at the zero
steady state;

(ii) when �=−b /a, Eq. (1.1) undergoes a Bogdanov-
Takens bifurcation at the zero steady state;

(iii) when �=�k, Eq. (1.1) undergoes a steady-state/Hopf
interaction at the zero steady state;

�II� If d=a=b2 /2, b�0, then we have the following:

(i) when ��−b /a, Eq. (1.1) undergoes a codimension-
one steady state bifurcation at the zero steady state;

(ii) when �=−b /a, the zero steady state has a triple zero
eigenvalue singularity;

�III� If 0�d=a�b2 /2 and b�0, then Eq. �1.1� under-
goes a codimension-one steady state bifurcation at the zero
steady state for all ��−b /a and undergoes a Bogdanov-
Takens bifurcation for �=−b /a.

Theorem 2.2:

(i) If d=a�b2 /2, b�0 and �0=1 /�2a−b2arccos��b2

−a� /a�, then the zero steady state of Eq. (1.1) is un-
stable when 0���−b /a or ���0;

(ii) If d=a=b2 /2 and b�0, then the zero steady state of
Eq. (1.1) is unstable when ��−b /a;

(iii) If 0�d=a�b2 /2 and b�0, then the zero steady state
of Eq. (1.1) is unstable for all ��0.

Remark 2.1: All bifurcations in the considered system
are nongeneric, since there is always the trivial equilibrium.
Therefore, one cannot apply results on generic fold,
Bogdanov–Takens or fold-Hopf bifurcations. As you will see
in the following section, in the simplest case of one critical
eigenvalue zero, we found only the transcritical and pitch-
fork bifurcations, but not a fold singularity.

Remark 2.2: From Lemma 2.2, we know that if either
d=a�b2 /2, b�0 and −b /a����0, or d=a�b2 /2, b�0,
and �=−b /a, all roots of Eq. (2.4), except for roots with zero
real parts, have negative real parts. So, in these cases, it is
not sufficient to determine the stability of the zero steady
state of Eq. (1.1) according to the linearized system. But the
dynamics on the center manifold is topologically equivalent
to that of the system on the whole phase space. Therefore, to
determine the stability of the zero steady state of Eq. (1.1),
we have to compute the normal forms on the center manifold.
In the rest of the paper, we focus on the case of d=a
�b2 /2, b�0, and −b /a����0.

III. NORMAL FORMS ON THE CENTER MANIFOLD
FOR A SIMPLE ZERO EIGENVALUE

In this section, we refer the reader to Ref. 13 for notation
and general results on the theory of retarded functional dif-
ferential equations �RFDEs�. To determine the stability of the
zero steady state of Eq. �1.1� with d=a�b2 /2, b�0, and
−b /a����0, we have to compute the normal forms on the
center manifold. The method we use is based on the center
manifold reduction and normal form theory due to Faria and
Magalháes �see the Appendix�.

Letting a, b, and � be fixed and considering d as a bifur-
cation parameter, we shall investigate the dynamics of sys-
tem �1.1� when d=a and ��b /a. In this case, the character-
istic equation has a simple zero solution. In the following,
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we shall use the procedure as shown in section A to compute
the normal form of system �1.1� associated with this zero
eigenvalue. Here 0= 0�.

For convenience, we introduce a new parameter � by
considering d=a+� so that �=0 is a steady state bifurcation
value of Eq. �1.1�. Furthermore, rescale the time by t� t /� to
normalize the delay �1.1� and then system �1.1� can be writ-
ten as Eq. �A1� in the phase space C=C��−1,0� ,R2�, with
L :C→R2 given by

L������ = �� �2�0�
− a�1�0� − b�2�0� + �a + ���1�− 1� 	 , �3.1�

and F :C→R2 given by

F��,�� =
�f��0�

2!
� 0

�1
2�− 1� 	 +

�f��0�
3!

� 0

�1
3�− 1� 	

+ O����4� , �3.2�

where �= ��1 ,�2�T�C. For system �1.1�, the function of
bounded variation �� : �−1,0�→R2�R2 is defined by

����� = ��0M − ��1N ,

where ��=���+�� is the Dirac distribution at the point
�=−�, and M and N are defined by Eq. �2.3� with d=a+�.
Moreover, we can choose � and � as follows:

���� = �1

0
�, − 1 � � � 0

and

��s� =
1

b + a�
�b,1�, 0 � s � 1

such that �� ,��=1, �̇=�B and �̇=−B�, where B=0. So,
it follows from Eq. �A7� that

1

2
f2

1�x,y,�� =
�

b + a�
��x + �y1�− 1� +

f��0�
2!

�x + y1�− 1��2� ,

1

2
f2

2�x,y,��

= ��I − 
�X0� 0

��x + y1�− 1�� +
f��0�

2!
�x + y1�− 1��2 � ,

1

3!
f3

1�x,y,�� =
�

b + a�
� f��0�

3!
�x + y1�− 1��3� ,

1

3!
f3

2�x,y,�� = �I − 
�X0� 0

�f��0�
3!

�x + y1�− 1��3 � .

Then it follows from Eq. �A14� that

1
2g2

1�x,0,�� = Proj�Im�M2
1��c

1
2 f2

1�x,0,�� . �3.3�

Since B=0 it is easy to check that

�Im�M2
1��c = spanx2,x�,�2� . �3.4�

It follows from Eqs. �3.5� and �3.4� that

g2
1�x,0,�� =

2�

b + a�
��x +

f��0�
2!

x2	 , �3.5�

and then the normal form of Eq. �1.1� on the invariant local
center manifold y=0 is given by �up to the second order
terms�

ẋ =
�

b + a�
��x +

f��0�
2!

x2	 + h.o.t. �3.6�

If f��0�=0, we have to compute g3
1�x ,0 ,��. From Eq. �A13�

and the fact that Ker�M2
1�c=0, we have

U2�x,�� = M2
−1PI,2� f2

1�x,0,��
f2

2�x,0,��
	 = � 0

h2����x,�� 	 ,

where h2���= �h2
�1�����x ,�� ,h2

�2�����x ,���T is the unique solu-
tion in U2

2�Q1� of the equation

�M2
2h2��x,�� = �I − 
�X0� 0

2��x
� . �3.7�

Writing h2q= �h2q
�1� ,h2q

�2��T�Q1, in the general form, we have

h2
�i�����x,�� = �

�q�=2

h2q
�i�����x,��q

= h220
�i� ���x2 + h211

�i� ���x� + h202
�i� ����2

with i=1,2. It follows from Eq. �3.7� that

ḣ220
�1� ��� = 0, ḣ211

�1� ��� =
2�

b + a�
,

ḣ202
�1� ��� = ḣ220

�2� ��� = ḣ211
�2� �0a� = ḣ202

�2� ��� = 0

with the boundary conditions

ah220
�1� �0� − ah220

�1� �− 1� = 0,

ah211
�1� �0� − ah211

�1� �− 1� =
2�

b + a�
,

h202
�1� �0� − h202

�1� �− 1� = 0,

h220
�2� �0� = 0, h211

�2� �0� =
2

b + a�
, h202

�2� �0� = 0.

Solving the above equations with the boundary conditions
gives

h220��� = �c1

0
�, h211��� =�

2�

b + a�
� + c2

2

b + a�
�, h202��� = �c3

0
� ,

where ci, i=1,2 ,3, are constants and can be determined by

h2q��� � Q1 = � � C1:��,�� = 0� .

A simple calculation shows that c1=0, c2=a�2−2 / �b+a��2,
c3=0.
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So,

U2�x,�� = �
0

2�

b + a�
� +

a�2 − 2

�b + a��2

2

b + a�
�x� .

Using the change of variables of the form �x ,y�= �x̂ , ŷ�
+ 1 / 2U2�x̂ ,�� in Eq. �A4�, we get �after dropping the hats�

1

3!
f̃3

1 = −
��2�b + a�2 + 2�

2�b + a��3 x�2 +
�f��0�

6�b + a��
�x + y1�− 1��3.

Since B=0, we have

�Im�M3
1��c = spanx3,x2�,x�2,�3� , �3.8�

and then we have

1

3!
g3

1�x,0,�� = Proj�Im�M3
1��c

1

3!
f̃3

1�x,0,��

= −
��2�b + a�2 + 2�

2�b + a��3 x�2 +
�f��0�

6�b + a��
x3,

which, together with Eq. �3.6�, implies that when f��0�=0
the normal form on the invariant local center manifold y=0
is given by �up to the third order terms�

ẋ = �x +
�f��0�

6�b + a��
x3 + h.o.t. �3.9�

where �=� /b+a��−��2�b+a�2+2��2 / �2�b+a��3�.
From Lemma 2.2, the center manifold by Carr14 and the

bifurcation theorem,13,15 the dynamics of the delay differen-
tial equation �1.1� is topologically equivalent to that of Eq.
�3.9� at the sufficiently small neighborhood of �=0. In ad-
dition, notice that in a sufficiently small neighborhood of
�=0 the sign of � is completely determined by that of �
provided that d=a�b2 /2, b�0, and −b /a����0. So, by
the normal forms on the center manifold Eqs. �3.6� and �3.9�
the following two theorems follow immediately.

Theorem 3.1: Assume that d=a�b2 /2, b�0, and
−b /a����0.

(i) If f��0��0, then the zero solution of Eq. (1.1) is un-
stable.

(ii) If f��0�=0, then the zero solution of Eq. (1.1) is stable
for f��0��0 and unstable for f��0��0.

Theorem 3.2: Assume that a�b2 /2, b�0, −b /a��
��0, and d=a+� with ��� being a sufficiently small positive
number.

(i) The zero solution of Eq. (1.1) is asymptotically stable
for ��0 and unstable for ��0.

(ii) When f��0�=0, Eq. (1.1) undergoes a supercritical
pitchfork bifurcation at the zero solution.

(iii) When f��0��0, Eq. (1.1) undergoes a transcritical
bifurcation at the zero solution.

According to Theorem 3.1, if f��0�=0, the stability re-
gion for the zero solution of Eq. �1.1� with d=a�b2 /2, b�0
can be geometrically plotted in Fig. 1.

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations of Eq.
�1.1� to verify the theoretical results obtained in the previous
sections. To this aim, we first define the step as 0.06 in nu-
merical simulations and then the initial condition for the de-
lay differential equation �1.1� is chosen as follows:

x�t� = �0, for − � � t � − 0.06,

x0

0.06
t − x0, for − 0.06 � t � 0, �

and ẋ�t� = y0, for all t � �− �,0� , �4.1�

where x0, y0 should be specified in advance in the numerical
simulation. In the following, the assignments are split into
two parts depending on whether f��0� is zero or not.

�i� Taking f�x�=tanh�x�, we have f��0�=1�0, f��0�=0,
f��0�=−2�0. For numerical simulations, we further take
the parameters d=a=1, b=−0.5 such that a�b2 /2. It fol-
lows from Lemma 2.2 that �0�1.8285. So, Theorem 3.1
implies that when −b /a=0.5���1.8285=�0 the zero solu-
tion of Eq. �1.1� is stable as illustrated in Figs. 2 and 3. In
order to investigate the stability and bifurcation of the zero
solution of Eq. �1.1� when d crosses the critical value d=1 in
ascending order, we should consider a small perturbation of
d=1. To this aim, we take f�x�=tanh�x�−0.1x and the result
of the numerical simulation is illustrated in Fig. 4, showing
the zero solution of Eq. �1.1� is stable. However, when f�x�
=tanh�x�+0.1x, the result of the numerical simulation shows
that the zero solution of Eq. �1.1� is unstable with two stable
nonzero steady states, one being x�0.5838 and the other x
�−0.5838, emerge, shown in Fig. 5. So, Eq. �1.1� undergoes
a pitchfork bifurcation at the zero solution. These numerical
results are exactly consistent with the conclusions �i� and �ii�
of Theorem 3.2.

�ii� Taking f�x�=tanh�x+1�−tanh�1�, then

−1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

b

τ

a=1

Steady state/Hopf bifurcation

Bogdanov−Takens bifurcation

The zero solution stable for f ���(0) < 0 and
unstable for f ���(0) > 0

FIG. 1. �Color online� When f��0�=0, d=a�b2 /2, and b�0, the stability
region of the zero solution of Eq. �1.1� in the b−� plane is qualitatively
equivalent to what is shown in the figure. Here we take a=1.

043113-5 Stability and multiple bifurcations Chaos 18, 043113 �2008�

Downloaded 22 Jun 2011 to 136.186.80.71. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



f��0� = 1 − � e2 − 1

e2 + 1
�2

,

f��0� = − 2� e2 − 1

e2 + 1
��1 − � e2 − 1

e2 + 1
�2	 � 0.

In the following numerical simulations, we set a=1
− ��e2−1� / �e2+1��2, b=−0.3 and then a�b2 /2. From
Lemma 2.2, we have �0�2.8575. Figure 6 illustrates the
numerical results of Eq. �1.1� with �=2.4. Considering a
small perturbation of d at the critical value d=a=1
− ��e2−1� / �e2+1��2 by setting f�x�=tanh�x+1�−tanh�1�
−0.1x, then Fig. 7 illustrates numerical simulations of Eq.
�1.1� with �=2.4��0�2.8575 between −b /a�0.7143 and
�0�2.8575. In this case Eq. �1.1� has two steady states, x
=0 and x�−0.3555. The zero solution is stable and the non-
zero steady state is unstable. If setting f�x�=tanh�x+1�
−tanh�1�+0.1x and �=2.4, then the zero solution of Eq. �1.1�
becomes unstable and a nonzero steady state, x�0.3555, be-
comes stable, as shown in Fig. 8. Thus, Eq. �1.1� undergoes
a transcritical bifurcation at the zero solution. This is consis-
tent with conclusion �iii� of Theorem 2.
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FIG. 2. �Color online� Numerical simulations of Eq. �1.1� with a=1,
b=−0.5, f�x�=tanh�x�, and �=0.6�−b /a=0.5, showing that the zero solu-
tion of Eq. �1.1� is stable. Here the initial condition is given by Eq. �4.1�
with �x0 ,y0�= �0.3,0.1� and �x0 ,y0�= �−0.3,−0.1�, respectively, for the solid
line and the dashed line.
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FIG. 3. �Color online� Numerical simulations of Eq. �1.1� with �=1.7��0

�1.8285 and a, b, f�x� as indicated in Fig. 2, showing that the zero solution
of Eq. �1.1� is stable. Here the initial condition is given by Eq. �4.1� with
�x0 ,y0�= �0.6,0.5� and �x0 ,y0�= �−0.6,−0.5�, respectively, for the solid line
and the dashed line.
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FIG. 4. �Color online� Numerical simulations of Eq. �1.1� with f�x�
=tanh�x�−0.1x, �=1.7 and a, b as indicated in Fig. 2, showing that the zero
solution of Eq. �1.1� is stable. Initial conditions are the same as Fig. 3.
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FIG. 5. �Color online� Numerical simulations of Eq. �1.1� with f�x�
=tanh�x�+0.1x, �=1.7 and a, b as indicated in Fig. 2, showing that the zero
solution of Eq. �1.1� is unstable and two stable nonzero steady states
emerge. Initial conditions are the same as Fig. 3.
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FIG. 6. �Color online� Numerical simulations of Eq. �1.1� with f�x�
=tanh�x+1�−tanh�1� and a, b, � as indicated in Fig. 7. Here the initial
condition is given by Eq. �4.1� with �x0 ,y0�= �0.1,0.2� for the solid line,
�x0 ,y0�= �0.01,0.2� for the dashed line, �x0 ,y0�= �−0.1,−0.2� for the dotted
line.
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V. CONCLUSIONS

In this paper, we have investigated the stability and mul-
tiple bifurcations of a damped harmonic oscillator with de-
layed feedback near zero eigenvalue singularity. It was
shown that there are steady-state bifurcation, Bogdanov–
Takens bifurcation, triple zero, and Hopf-zero singularities
by analyzing the distribution of the roots of the associated
characteristic equation. A center manifold reduction and nor-
mal form technology for RFDEs are used to demonstrate the
presence of pitchfork and transcritical bifurcations in the
damped harmonic oscillator with delayed feedback for the
case when the characteristic equation has a single zero root.
For this case, the stability of the zero solution is determined
by the higher-order derivatives of the restoring force f and
the types of bifurcations is completely determined by
whether the second-order derivative of the restoring force f
is zero or not. The present paper is complementary to the
previous work1,4,10–12 and demonstrate that the damped har-
monic oscillator with delayed feedback near zero eigenvalue

singularity exhibits the presence of multibifurcations like
steady-state bifurcation, Bogdanov–Takens bifurcation, triple
zero singularity, Hopf-zero singularity, and even for the sim-
plest case, the simple zero eigenvalue singularity, multista-
bility is possible �see Fig. 5�.
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APPENDIX: FARIA AND MAGALHãS NORMAL FORMS

Let C=C��−1,0� ,Rn� is the Banach space of continuous
functions from �−1,0� into Rn with supremum norm. We
define zt�C as zt���=z�t+��, −1���0. Let us consider the
following parameterized family of nonlinear RFDEs with an
equilibrium point at the origin:

ż�t� = L����zt� + F�zt,�� , �A1�

where ��V, a neighborhood of zero in Rs, is considered as
a parameter, L :C�V→Rn is a parameterized family of
bounded linear operators from and F :C�V is a Ck function
�k�2�, with F�0,��=0, D1F�0,��=0 for all ��Rs.

Denote the characteristic equation of the linearized equa-
tion at the origin by

det ���,�� = �I − L�e�·I� = 0,

where I is the n�n identity matrix. Let A��� be the infini-
tesimal generator of the flow for the linear system ż�t�
=L���zt, with spectrum ��A����. Then we have

��A���� = � � C:det ���,�� = 0� .

From the Riesz representation theorem the linear map L�

can also be expressed in integral form as the following:

L������ = �
−1

0

�d���������� ,

where �� : �−1,0�→Rn�Rn is a function of bounded varia-
tion. Let Rn* be the n-dimensional vector space of row vec-
tors, define C*=C��−1,0� ,Rn*� and the adjoint bilinear form
on C*�C as follows:

���s�,����� = ��0���0� − �
−1

0 �
0

�

��� − ��d���������d� ,

�A2�

with ��s��C*, �����C. The formal adjoint operator A*���
of A��� is defined as the infinitesimal generator for the so-
lution operator of the adjoint equation in C*,

ẇ�t� = − �
−1

0

w�t − ���d������ .

Note that the eigenvalues of ��A���� with zero real parts
shall play an important role in the bifurcation theory of
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FIG. 7. �Color online� Numerical simulations of Eq. �1.1� with a=1−e2

−1‘e2+1, b=−0.3, and f�x�=tanh�x+1�−tanh�1�−0.1x, 0.7143�−b /a��
=2.4��0�2.8575. Here the initial condition is given by Eq. �4.1� with
�x0 ,y0�= �0.2,0.2� for the solid line and �x0 ,y0�= �−0.2,−0.2� for the dashed
line.
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FIG. 8. �Color online� Numerical simulations of Eq. �1.1� with f�x�
=tanh�x+1�−tanh�1�+0.1x and a, b, � as indicated in Fig. 7. Here the initial
condition is given by Eq. �4.1� with �x0 ,y0�= �0.4,0.2� for the solid line,
�x0 ,y0�= �0.1,0.2� for the dashed line, �x0 ,y0�= �−0.1,−0.2� for the dotted
line.
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RFDEs. For simplicity, throughout the rest of the paper, we
assume that when �=0 the characteristic equation �A� has
roots with zero real parts, i.e., taking �=0 as the critical
value. Let A0�A�0� and denote 0 by

0 = � � ��A0�:Re � = 0� � � .

Using the formal adjoint theory for FDEs in Ref. 13, the
phase space C can be decomposed by 0 as C= P � Q, where
P is the generalized eigenspace associated with the eigenval-
ues in 0, Q= ��C : �� ,��=0 for all �� P*�, and the dual
space P* is the generalized eigenspace for A*�0� associated
with the eigenvalues in 0. For dual bases � and � of P and
P*, respectively, such that ���s� ,�����= Ip, where p
=dim P and Ip is a p� p identity matrix, there exists a p� p
real matrix B with ��B�=0, which satisfies simultaneously

�̇ = �B and − �̇ = B� .

As shown in Refs. 16 and 17, an appropriate phase space
for considering normal forms of Eq. �A1� is the Banach
space BC of functions from �−1,0� into Rn which are uni-
formly continuous on �−1,0� and with a jump discontinuity
at 0. The elements of BC have the form �+X0�, where �
�C, ��Rn, where

X0��� = � I , � = 0,

0, − r � � � 0,
�

so that BC is identified with C�Rn with the norm
��+X0��= ���C+ ���Rn.

Let 
 :BC→P denote the projection


�� + X0�� = ����,�� + ��0���, � � C, � � Rn,

and then the decomposition C= P � Q yields a decomposition
of BC by 0 as the topological direct sum

BC = P � Ker


with the property Q'Ker 
, where Q is an infinite dimen-
sional complementary subspace of P in C as shown above.
According to the above decomposition we now decompose
zt�C1 in Eq. �A1� as zt=�x�t�+y, with x�t��R2 and y
�Q1�Q�C1, where C1 is the subset of C consisting of
continuously differentiable functions. Note that � is a param-
eter and is considered as a variable. So, letting L0�L�0�, we
rewrite system �A1� as

ż�t� = L0zt + �L��� − L0�zt + F�zt,�� �A3�

and then system �A1� under the composition zt=�x�t�+y can
be decomposed as a system of abstract ODEs in Rp�Ker 
,
as

ẋ = Bx + ��0��L��� − L0���x + y� + F��x + y,��� ,

�A4�
ẏ = AQ1y + �I − 
�X0�L��� − L0���x + y� + F��x + y,��� ,

where

AQ1y = ẏ + X0�L0�y� − ẏ�0�� �A5�

is the restriction of A as an operator from Q1 into Ker 
.
For u�C, ��V, considering the formal Taylor expan-

sion,

L����u� = L0u + L1���u +
1

2
L2���u + ¯ ,

F�u,�� =
1

2
F2�u,�� +

1

3!
F3�u,�� + ¯ ,

the nonlinear term of order j the variables �u ,�� for Eq. �A3�
is given by

1

�j − 1�!
Lj−1���u +

1

j!
Fj�u,�� .

So, system �A4� can be written as

ẋ = Bx + �
j�2

1

j!
f j

1�x,y,�� ,

�A6�

ẏ = AQ1y + �
j�2

1

j!
f j

2�x,y,�� ,

where

1

j!
f j

1�x,y,�� = ��0�� 1

�j − 1�!
Lj−1�����x + y� +

1

j!
Fj��x

+ y,��	 ,

�A7�
1

j!
f j

2�x,y,�� = �I − 
�X0� 1

�j − 1�!
Lj−1�����x + y�

+
1

j!
Fj��x + y,��	 .

As for autonomous ODEs in Rn, the normal forms are ob-
tained by a recursive process of changes of variables. At a
step j, the terms of order j�2 are computed from the terms
of the same order and from the terms of lower orders already
computed in previous steps. Assume that steps of orders
2 ,3 , . . . , j−1 have already been performed, leading to

ẋ = Bx + �
l=2

j−1
1

l!
gl

1�x,y,�� +
1

j!
f̃ j

1�x,y,�� + h.o.t.,

�A8�

ẏ = AQ1y + �
l�2

j−1
1

l!
gl

2�x,y,��
1

j!
f̃ j

2�x,y,�� + h.o.t.,

where we denote by f̃ j = � f̃ j
1 , f̃ j

2� the terms of order j in
�x ,y ,�� obtained after the previous transformations of vari-
ables and h.o.t. stands for higher order terms. Following the
algorithm of Refs. 16 and 17 at step j, using a change of
variables of the form

�x,y� = �x̂, ŷ� + Uj�x̂,�� � �x̂, ŷ� + �Uj
1�x̂,��,Uj

2�x̂,��� ,

where x, x̂�Rp, y, ŷ�Q1, and Uj
1 :Rp+s→Rp, Uj

2 :Rp+s

→Q1 are homogeneous polynomials of degree j in x̂, system
�A6� can be put into the normal form, after dropping the hats
for simplification of notations,
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ẋ = Bx + �
j�2

1

j!
gj

1�x,y,�� ,

ẏ = AQ1y + �
j�2

1

j!
gj

2�x,y,�� , �A9�

where gj
1, gj

2�j�2� are the terms of order j and given by

gj
1�x,y,�� = f̃ j

1�x,y,�� − �DxUj
1�x,��Bx − BUj

1�x�� ,

gj
2�x,y,�� = f̃ j

2�x,y,�� − �DxUj
2�x,��Bx − AQ1Uj

2�x�� .

�A10�

Further, if the nonresonance conditions relative to
0���A0�,

�q,�̄� � r, for all r � ��A0� \ 0, q � N0
p, �q� � 0

�A11�

with �̄= ��1 , . . . ,�p�, where �1 , . . . ,�p are the eigenvalues in

0, counting multiplicities, and �q , �̄�=q1�1+ ¯ +qp�p, are
satisfied, then the locally invariant manifold for system �A1�
tangent to P at zero must be y=0 and the flow on this mani-
fold is given by the p-dimensional ODE

ẋ = Bx +
1

2!
g2

1�x,0,�� +
1

3!
g3

1�x,0,�� + h.o.t. �A12�

The nonlinear terms in Eq. �A9� are in normal form in the
classical sense with respect to the matrix B. In applications,
gj

1�x ,0 ,�� usually can be determined by the following pro-
cedure.

Define A.1: For j�2, let Mj denote the operator defined
in Vj�Rp+s�Ker 
�, with values in the same space, by

Mj�h1,h2� = �Mj
1h1,Mj

2h2� ,

�Mj
1h1��x,�� = Dxh1�x,��Bx − Bh1�x,�� ,

�Mj
2h2��x,�� = Dxh2�x,��Bx − AQ1

�h2�x,��� ,

with domain D�Mj�=Vj
p+s�Rp+s��Vj

p+s�Q1�. Here, we
use the notation Vj

p+s�Y� to denote the space of homoge-
neous polynomials of degree j in p+s variables x

= �x1 ,x2 , . . . ,xp ,�1 ,�2 , . . . ,�s��Rp+s, with coefficients in Y,
for Y a Banach space.

According to Refs. 16 and 17, we have

Uj�x� = Mj
−1PI,j f̃ j�x,0,�� � Ker�Mj�c �A13�

and then

gj
1�x,0,�� = �I − PI,j� f̃ j

1�x,0,�� � Im�Mj
1�c, �A14�

where PI,j = �PI,j
1 , PI,j

2 � is the projection of Vj
p+s�Rp+s�

�Vj
p+s�Ker
� on Im�Mj

1�� Im�Mj
2�.

Remark A.1: This appendix briefly recollected the nor-
mal form technique for delay differential equations due to
Faria and Magalhaes.16,17 In this method, the normalizing
transformations are used to linearize the center manifold, so
that the normalized restriction to this manifold can be com-
puted by setting the noncritical variables �y� to zero. As men-
tioned above, such a linearization requires certain �generic�
nonresonance condition (A11). Actually, this condition is re-
dundant for the existence of the center manifold and can be
completely avoided, if one first computes the expansion of a
center manifold and then normalize on it �these steps can be
combined�, referring to Ref. 18 for this technique.
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